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ON NON-ONE-DIMENSIONAL SELFSIMILAR SOLUTIONS WITH 
PLANE WAVES IN GAS DYNAMICS* 

S.A. POSLAVSKII and I.S. SHIKIN 

A set of new exact selfsimilar solutions is obtained, describing non-one- 
dimensional adiabatic motions of an ideal gas with plane waves. The 
solutions show a uniform expansion of the gas in planes perpendicular to 
the direction of the basic motion. The system of equations of gas 
dynamics is reduced for these solutions to a system of ordinary differential 
equations /l/. Problems of a short shock and the propagation of a strong 
detonation wave in a uniformly expanding gas was solved numerically in 
/2/, where an exact solution was also found for the problem of a short 
shock for a special value of the adiabatic index. 

1. Let us consider the adiabatic motions of an ideal gas whose parameters are given by 
the formulas 

Here r[ are rectangular Cartesian coordinates (s, = r). The velocity components along the 

2, x1 axes are denoted by v, vi, and the index i takes the values 2 and 3 (there is no 
summation over i). The motion (1.1) is assumed to be either two-dimensional (fi = 1, e,(l) = 1, 
e,(l) = 0, v, = z,lt, vII = 0), or three-dimensional 2 e,(*) = 1, 
The constants a and b are of dimensions [al = &&=Ibi = LT+. 

es(*) = 1, up = x,/t, v, = x3/t). 

The system of equations of gas dynamics reduce:, for such motions, to the following system 
of ordinary differential equations in the variables z(r)= VP/R, V(r), R(z), 7 = In 1 h 1 /l/: 

(Y 

dz/dV = z {z I2 - x (y - 1) - 2Vl + I(? + 1) v - 2 + fi (7 - 
l)l(V-6)‘- (y- l)V(V-l)(V- 6)}(V- 6)-1x 

(1.2) 

Iz (x - p - V) + v (U - 1) (V - 6)1_’ 
V’ = Iz (x - fJ - v) + v (V - 1) (V - S)l Iz -(V - fi)q-’ 
R’ (V - 6) = R Is - fi,+ (k + 2) V - V’] 

x = Is + 2 + 6 (k + I)1 y”’ 

is the adiabatic index Y > 1). 
The last equation of (1.2) can be replaced by the adiabaticity integral /2/ 

PR-V = const IR (V - S)IEhq 

E = 2 - (v - 1) 8 + 6 tk + 1 - Y (k + 3)l 
s-b+t-((k-f2) 9 

rl=_ (v + 1) 8 + 2 (k + 2) + B [k + 1 -Y (k + 3)l 
s-B+6@+% 

The relations on the shocks are written just as in thecase of one-dimensional selfsimilar 
motions /3/ 

Rr(V, - 6) = R, (V, - 6) (1.3) 

*Prikl.I4atem.:4ekhan.,50,1,104-109,1986 
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v1--8 t &*) =va--6+ &L& 
(v,-8)‘+q+-(v*-8)2+~ 

Here the indices 1 and 2 denote quantities on different sides of the surface of disconti- 
nuity. 

2. Letususeastheunperturbed background a uniformly expanding gas in which (po,po are 
constants) 

p,_!k p=po 
8 ’ $V ’ v=O, vi=dB)$, i=2, 3 (2.1) 

([pal = ML-W, [pal = ML-WV-*) 

We shall consider the problem of a gas with parameters (2-l), occupying the right half- 
space (s>O).and escaping into a vacuum. The condition of selfsimilarity requires that the 
escape of gas into the left-hand half-space begins at the instant t= 0 corresponding to the 
singularity in the solution of (2.1). Here p0 and p. serve as characteristic dimensional 
constants;the selfsimilarity index 6 and the selfsimilar variable n are therefore given by 
the formulas 

where a is a dimensionless abstract constant. 
We further assume that y< 1 + 24 Then the value of 8 will lie within the interval 

(0, 1). 
Putting a = p0 in (l.l), we reduce system (1.2) to the form 

d.7 

dir= 
a(2r-~(l+y)V-2a](V-6)+(y-l)V(V-l)) 

V[z-(V-l)(V-Ly] (2.2) 
v’=_ ~tz-(~--i)v--)l 

z-((v-6)a ’ R’(V-8)=-R(v’+V) 

The field of integral curves of (2.2) in the (V,z) plane has the following singularities: 
O(V= O,z= 0) is a node, A (V= 0, z= 8*) is a saddle, B(V= 6, z= 0) is a saddle, 
C (V= 1, z = 0) is a node, D (V = 26 (y + 1)-l, z = 6 (y - 1) (y - 26 + 1) (y + 1)-‘) is a node, E (V = 
0, z = co) is a saddle, F (V= oo,.z= 0) is a saddle and G(V= co, z= M) is a degenerate 
singularity (saddle-node) (Fig.1, the dashed line depicts the parabola z = (V- 6)a). 

The solution of the problem of the escape of a uniformly expanding gas into a vacuum is 
represented by a sequence of segments of the integral curves OA, AG,GC. The segment OA 
corresponds to the unperturbed state (2.1), and the singularity A to a weak discontinuity. 
Matching of the solution at an infinitely distant singularity G can be carried out, for example, 
by the change of variables W = (V - 6)-r, y = z (V - 6)-a. In the (W,VJ) plane the straight line 
w=o corresponds to the singularity G, and the separatrix connecting the images of the 
singularities A and C and intersecting the stright line W= 0 at some non-singular point, 
corresponds to the integral curve AGC. 

Since the solution has singularities at t= 0, the boundary with the vacuum recedes 
instantaneously to infinity (h= -oo), with the singularity C corresponding to it. The 
asymptotic formulas near this point have the form 

z=crIhI-0, v = 1 + e, I a 12, R = cg I h v-l) 

61 = 2 (fi + 1)/p, x = i/(1 - 8) when y > 1 + (fl + 1)-l,! x = m when y < 1 + (fI + 1)-l (c,, cp, c, are 
positive constants. 

If y = 1 + 2 (fJ + l)“, the problem in question has an exact solution which can be described 
in the region behind the weak shock by 

I(V -1y(v -&)l=&/+_~+l (2.3) 

z=($$)‘* R= (p+vz;;l_l 

where A,= av/(Bm is the value of the selfsimilar variable corresponding to the 
weak shock. 

In dimensionless variables the solution (2.3) has the form (-x, <z<r*) 

p,,_!L ” - z/t P, it 

tB 
(U - @)a 

(b + 2)" -z/t ’ P=-F.,n (~+zr"-r,t 

x*=.1/@ +I)@ + 3)po/Pot’~@+‘) 
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The gas parameters in front of the weak shock (z >z*) are given by the formulas (2.1). 
The density, pressure and velocity profiles and the pattern of motion for the solution in 
question for p = 2,y = 2 are shown in Fig.2 (curve 1 corresponds to the distribution of p/p*, 
curve 2 to P/P* r curno 3 to vtJx,; and an asterisk denotes the quantities in the unperturbed 
state (2.1)). 

From the conditions on the shocks (1.3) it follows that in the case of 'y= 1 + @-I the 
singularity D(V= fl(2@ + 1)-r, 1:=X/1(@ -I- 1)(@ + 1)') maps the state of the gas behind the shock 
wave whose corresponding state in front of the shock is mapped by the point O(V = 0,z = 0). 
Therefore, when y= 1 f p-l, there exists an exact solution of the selfsimilar problem of the 
propagation of a strong explosive wave in a uniformly expanding gas. In dimensional variables 
the solution is represented by the formulas (2.1) (with ppo = 0) for x>m* where x* = bfi 
is the coordinate of the shock wave front (b is a constant), and by the formulas 

with s<x*. The profiles of the gas parameters in this solution and the scheme of motion 
are shown in Fig.3 (curve 1 is p/p,, curve 2 is p/p*, curve 3 is v/v,, an asterisk denotes 
the values directly behind the shock wave front fi = 4, y= 2). 

3. Let us write in the system of Eqs.ll.2) 8 = 1, x= 0, k = --1, s= @y--Z. Then it 
simplifies considerably and takes the form 

2' = 2 [2 - fl (y - 1) - 2Vl (V - I)_“, v = -v (3.1) 
~(V-1)-RIzV+~(y-~If-221 

Integrating (3.1) we obtain 

(3.2) 

Apart from the solution (3.2) we have, in the case in question, a singular solution of 
the initial system of equations of gas dynamics, which has the following form in the variables 
x, ‘V, R, L : 

Fig.1 

Fig.3 

Fig.2 

Fig.4 



where k,, k, are arbitrary constants. 
Formulas (3.2) with I+= 0 and formulas (3.3) together yield the solution of the problem 

of the escape, into a vacuum, of a transversely expanding gas with non-uniform density dis- 
tribution. The solution is written in dimensional variables in the form 

PO p=,ev [ 
2-pt(v--i) + 

v+l 
(P+;,:,-f, (+0)-y’” 

2 - B (Y - 1) xv = - (B + 4) (Y - 4) ( 9 Ptt ) cp= 2_-B;y_q 
Here x* and rv are the coordinates of the weak shock and of the boundary with the vacuum 

respectively. 
We note the existence of an analogue of the Riemann invariant for the solution in question, 

in the region sv,<x<r,(c is the speed of sound) 

4. Let us consider the selfsimilar problem of a short impact for a uniformly expanding 
gas whose parameters in the unperturbed motion have the form (x>O) 

Here A is a constant with dimensions MI = ML”-sTfi, f3 = 0, 1, 2 (e,(O) = e,(O) = 0), i = 2, 3. 
Let S = zl(btd) be the selfsimilar variable where b is a certain dimensional constant, and 

[bl = LT-*. 
We will seek the equation of the trajectory in the (V,Z) plane corresponding to the 

solution of the problem of short impact, in the form 

2 = C (V - 1) (V - 6), C = const (4.1) 

The trajectory must pass through the image of the shock wave front (V = 26 (y + 1)-l, z = 
26’y(y - l)(y + l)-*) and through a singularity on the parabola z = (V- 6)* with coordinates 
(V = 6 (x - fi) (x - p + 6 - I)_', 2 = 6% (1 - 6)Z (x - B + 6 - 1)_'), where x = [p f 2 $ 6(0 - 2)1 y-l. 

Remembering also that the relation (4.1) must satisfy the first equation of (1.21, we 
obtain the following expressions for the indices 6,O and the constant C: 

s=B-i-2-((B+l)y (4.2) 
(I)= 7+48-(5+48)Y, c= 2Yh 

2b (2fJ + 3) (Y-i) 

we shall restrict ourselves to considering the case O,< o <I. Then the possible values 
of the adiabatic index will be contained within the limits l<y< 1 f 2/(5-l- 48). We note 
that the case 0 = 0, y = 1 + 2/(5 + 48) was dealt with in /4, 5/ at fi = 0 and in /2/ at p=l, 2. 
A solution of theproblemof a short impact in a medium of variable density (p = O,o#O) was 
obtained in /6/. 

The constant b can be chosen so that condition h = h,= 1 holds on the shock wave front. 
Then the solution of the problem of a short impact is given by the formulas (4.1), (4.2) and 
the relations 
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In dimensional variables the solution takes the form (r<r* = @) 

The corresponding schematic graphs of the density, pressure and velocity distribution are 
giveninFig.4 (the symbols accompanying the curves are the same as in Fig.3 f= (28 + 3)6-'). 
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INVESTIGATION OF A THREE-DIMENSIONAL HYPERSONIC VISCOUS SHOCK 
BLUNT BODIES AROUND WHICH FLOW OCCURS AT ANGLES OF ATTACK AND 

E.A. GERSHBEIN*: V.G. KRUPA and V.S. SHCHELIN 

Translated by L.K. 

LAYER ON 
SLI PPRGE* 

The three-dimensional hypersonic flow of dissociating non-equilibrium air 
past smooth blunt bodies with a catalytic surface is considered. An 
approximate numerical method of solving the equations of a hypersonic, 
three-dimensional viscous shock layer (SL for short) is proposed, allowing 
the study of flows not possessing planes of symmetry. The method is based 
on introducing, on the body surface, an orthogonal @,+I), coordinate system 
attached to the stream lines. The tangents to these stream lines are 
parallel to the incoming flow velocity vector component lying in the plane 
parallel to the body surface. The system of equations is written in this 
coordinate system, and derivatives with respect to the transverse coordinate 
21 of all functions sought are all omitted with exception of the pressure 

P and the transverse component ua of the velocity vector. The derivative 
au=/az= is found from the momentum equation in the zp direction differentiated 
with respect to za and simplified appropriately. The resulting system of 
equations is identical with the initial system near the critical point 
and the planes of synnnetry, provided that the latter exist. Some results 
of computing flows at different angles of attack and slippage are given 
for elliptical paraboloids with various cases of catalytic reactions 
taking place on the body surface. 

Flows past wings of infinite span, for angles of attack and slippage 
were investigated in /l/. Three-dimensional flows with a plane of symmetry 
were studied in /2-4/, a triagnular wing at large angles of attack was 
considered in /2/ and a body of complex shape was considered in /3, 4/. 

1. Formulation of the problem. The equation of a SL can be written, taking the 
chemical non-equilibrium equations and multicomponent diffusion into account and neglecting 

*Prikl.Matem.Mekhan.,50,1,110-118,1986 
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